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Sliding blocks with random friction and absorbing random walks
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With the purpose of explaining recent experimental findings, we study the distributionA(l) of distancesl
traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the
friction coefficientm is a random function of position is considered. The problem of findingA(l) is equivalent
to a first-passage-time problem for a one-dimensional random walk with nonzero drift, whose exact solution is
well known. From the exact solution of this problem we conclude that~a! for inclination anglesu less than
uc5tan(̂ m&) the average traversed distance^l& is finite, and diverges whenu→uc

2 as^l&;(uc2u)21; ~b! at
the critical angle a power-law distribution of slidings is obtained:A(l);l23/2. Our analytical results are
confirmed by numerical simulation and are in partial agreement with the reported experimental results. We
discuss the possible reasons for the remaining discrepancies.

PACS number~s!: 05.40.2a, 68.35.Rh, 46.55.1d
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I. INTRODUCTION

Friction between solid surfaces is present in everyday l
One of the first experimental studies on friction was done
Leonardo da Vinci. His studies were rediscovered and
nounced by Amonton de la Hire in 1699 in the form of tw
laws: friction forces are~a! independent of the size of th
surfaces in contact and~b! proportional to the normal load
The proportionality coefficientm is the friction coefficient,
and depends on the material. The influence of velocity w
later studied by Coulomb, who discussed the difference
tween static and dynamic friction. Since then many stud
of friction have been conducted, which have revealed
complexity of friction related phenomena@1–7#. The study
of friction has been the subject of renewed interest lately
to its relevance in the behavior of granular materials@2#.

Due to surface roughness, the interface between two
ids put in contact can be thought of as consisting of ma
points, rather than as a continuous region@3#. These contact
points define a two-dimensional random set called a ‘‘mu
contact interface.’’ A basic setup for experiments on mu
contact interfaces consists of a slider of massM pulled by a
spring with effective stiffnessK ~which could represent the
bulk elasticity of the solid!, at a driving velocityv @4#. De-
pending on the parametersK,v, and M, the sliding motion
can have different regimes, including an oscillating ‘‘stic
slip’’ instability. Moreover, the friction coefficient is found
to depend not only on these three parameters but also
variety of other factors such as contact stiffness, creep ag
and velocity weakening of the contacts, that lead to a dep
dence not only on the instantaneous velocity but also on
sliding history@4,5#. Therefore, the friction force seems to b
both state and rate dependent. A phenomenological de
tion of the friction force that reproduces some aspects of
experimental data was proposed by Caroli and Velicky@6#.

Here, we focus on the random character of the multic
tact interface, and show that a simple model whose o
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ingredient is a randomly varying friction coefficient can e
plain recent experimental findings. We consider in particu
the dynamics of a sliding block on an inclined plane. Th
problem has been recently revisited by Brito and Gom
~BG! @7#, who report unexpected results. In their experime
tal setup, a block rests on a plane that makes an angleu with
the horizontal, whereu is close to but smaller thanuc , the
critical angle for dynamic friction. The block is set in motio
by the impact of a hammer at the base of the inclined pla
A ‘‘sliding’’ is thus produced, and the block stops after tr
versing a distancel. Measuring the distributionN(l) of
slidings with length larger thanl, these authors find that, fo
u close touc ,N(l);l2d. The exponentd is '1/2 and does
not seem to depend on the type of material that makes
block. Further exponents can be defined in principle, such
the one describing the divergence of the mean sliding len
^l&;(uc2u)2t1 as u→uc

2 . Brito and Gomes reportt1

'0.23 @7#.
In this work we introduce a model that uses a simp

expression@3# for the friction force and provides a micro
scopic explanation for most of the findings of Brito and G
mes. We assume that friction is due to the existence of r
dom contact points between the surfaces; therefore
friction coefficient is a rapidly varying functionm(l ) of the
block position l on the plane. A fundamental hypothes
which makes this model exactly solvable, is that the dis
bution of contact points isuncorrelatedon the length scales
of interest. We focus here on the simplest realization of
model, where no other features such as velocity-depen
forces are included. This model has been studied numeric
previously@8#. We show here that a closed analytical so
tion can be obtained by mapping this problem onto a fir
passage-time problem.

This paper is structured as follows: in Sec. II our mode
described and some numerical results are presented. In
III it is shown that this system is equivalent to a rando
walk with an absorbing barrier, and an exact solution is
rived for the distribution of slidings. Also in this section
comparison is made between numerical, analytical, and
2267 ©2000 The American Physical Society
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perimental results. Section IV contains a short discussion
our results.

II. THE MODEL

Consider a block of massm on a plane making an angleu
with the horizontal, and assume that at timet50 the block is
set in motion with velocityv0, i.e., with kinetic energyK0

5mv0
2/2. Let l be the distance traversed by the block fro

its starting position, measured along the plane, andK(l ) its
kinetic energy. Since the friction force opposing the mov
ment is mgm(l )cosu, and the parallel component of th
gravitational force ismgsinu ~see Fig. 1!, energy balance
implies

dK1$mgm~ l !cosu2mgsinu%dl 50. ~1!

We rewrite this in terms of the reduced kinetic ener
k(l )5K(l )/mgcosu as

]k~ l !

]l
5 tanu2m~ l !. ~2!

This equation can be integrated until the kinetic energy
comes zero. This defines the ‘‘avalanche size,’’ or stopp
distancel. If m(l )5C independent ofl , one has thatlC

5v0
2/@2gcosu(C2 tanu)#. This does not in general agre

with experimental results@7#, which show a broad distribu
tion of stopping distances. One could argue that in the
periments of BG,v0 is randomly distributed and thusl must
show a distribution with a finite width as well. But this so
of randomness cannot give rise to a power-law distribut
of stopping distances as observed in experiments, unlesv0
itself is power-law distributed, which does not seem to
easily justified.

Because of the random character of the multicontact
terface, on the other hand, it is physically reasonable to
sume that the coefficient of friction is not constant b
changes randomly from point to point. In this case the st
ping lengthl becomes a stochastic variable, and we are
terested here in calculating the probabilityA(l) for the
block to stop at a given positionl. We will show that under
certain circumstances~e.g., close to the critical angle!, fluc-
tuations in the friction coefficient can have important obse
able consequences, and in particular that such fluctuat
give rise to a power-law distribution of stopping distance

FIG. 1. Schematic representation for the block sliding on
chute.l is the displacement from the initial block position. Th
friction force depends on the block’s position.
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For simplicity we assumem(l ) to be an uncorrelated
random function of position, i.e.,

m~ l !5m̄2h~ l !, ~3!

where

^h~ l !&50,

^h~ l !h~ l 8!&5s2d~ l 2l 8!,

so that Eq.~2! now reads

]k~ l !

]l
5V1h~ l !, ~4!

whereV5 tanu2m̄ is the mean drift andh(l ) is a noise
term. If the mean driftV is positive, clearly there will be a
finite probability for the block never to stop. ForV,0, on
the other hand, the block always stops.

This problem can be easily implemented numerically@8#.
In our numerical implementation both the block and t
plane surfaces are represented by finite sequences of 0’s
1’s, each bit corresponding to a small region of lengtha. If a
given region of the surface is ‘‘prominent,’’ the correspon
ing bit is set to 1. Similarly, if that region is ‘‘deep,’’ the
corresponding bit is set to 0. Thus the profile of these s
faces is represented by strings of bits that are set to 1 w
probability Cp andCb for the plane and block, respectively
One says that the block and plane are in contact at a g
point whenever both the plane bit and the block bit that s
on top of it are set to 1. Assuming that the friction coefficie
is proportional to the number of ‘‘regions’’ in contact,m(l )
at positionl takes the value

m~ l !5b
N~ l !

Nmax
, ~5!

where N(l ) is the number of microcontacts,Nmax is the
block length in bits, andb is a constant that can be associat
with the contact stiffness. Equation~5! is similar to the one
proposed by Bowden and Tabor@3#. The dynamic evolution
dictated by Eq.~2! can be discretized and, after each d
placement of lengtha ~one bit!, the kinetic energy loss is
calculated as

Dk5aS tan~u!2
bN~ t !

Nmax
D . ~6!

The block is moved on the plane in single-bit steps until
kinetic energy vanishes. The critical angleuc is defined by
taking ^Dk&50 in Eq. ~6! and gives

tanuc5m̄5bCpCb , ~7!

In the limit in which the average sliding is much larg
than the block size in bits~i.e., if v0 is large oru is close to
uc) one does not expect any dependence of the results on
length Nmax of the block, as long as the distribution of th
friction coefficientm has a constant mean and width. In th
case it is numerically convenient to take a block length
one bit ~which is always set to 1!. The plane bits, on the
other hand, are set to 1 with probabilityCb . In this casem

a
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PRE 61 2269SLIDING BLOCKS WITH RANDOM FRICTION AND . . .
takes the values 0 andb with probabilities 12Cp and Cp ,

respectively, so thatm̄5bCp . Figure 2 shows our numerica
results for this single-bit implementation. We have usedCp

50.5 andb52, i.e., m̄51, thereforeuc5p/4. The initial
reduced kinetic energy wask057.2131026 m (v0
51022 m/s andg59.810 m/s2). Averages were performe
over 108 realizations for each value ofu. Whenu→uc we
find thatA(l);l23/2, for l smaller than au-dependent cut-
off j(u). This behavior is in partial agreement with the e
perimental results of BG@7#. While the exponent they find is
consistent with 3/2, they do not report any evidence for
existence of a finite cutoff. According to our results, a ve
large number of experimental realizations would be nee
before a cutoff could be clearly distinguished inA(l). As
can be seen by integrating the data in Fig. 2, for deviati
from the critical angle as large as 10%,A(l) deviates from
a power-law behavior only for very large events, which ha
a small probability 1025 to happen. This means that on
needs of order 105 realizations in order to assess the ex
tence of a cutoff inA(l). Notice, however, that BG only
performed 103 repetitions of their measurements for each
of parameters.

Figure 3 displays the mean stopping length^l& and the
cutoff j versusV}(uc2u), calculated from the data in Fig
2. Whenu→uc (V→0) we find that^l&;(uc2u)21 and
j;(uc2u)22 approximate our numerical results well. Th
is in slight discrepancy with BG who report that^l&;(uc
2u)20.23 @7#. This result is not surprising because, as
pointed out before, the number of realizations is not la
enough to assess the existence of the cutoff. In addition,
plane used in the experiments was also too short~1 m long!.
According to our arguments, the experimental results of
correspond to the region of large absolute values ofV, where
the exponent for the mean stopping length as a function
the slope of the plane is consistent with the experime
value ('20.23).

FIG. 2. DistributionA(l) of stopping lengths as obtained nu
merically for the one-bit-block model. Averages were taken o
108 realizations with an initial reduced kinetic energyk057.21
31026 m (v051022 m/s andg59.810 m/s2) and a critical angle
uc545°. The inclination angleu of the plane was 35°~circles!, 40°
~squares!, 44° ~diamonds!, 44.9° ~triangles!, and 44.99°~crosses!.
The dashed line corresponds toA(l)5l23/2. The same exponen
was found experimentally@7#.
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III. MAPPING TO A FIRST-PASSAGE-TIME PROBLEM

Sincek(l ) satisfies Eq.~2! the problem of findingA(l)
is readily mapped onto a first-passage-time~FPT! problem
for a random walker with nonzero drift. The reduced kine
energyk(l ) ~which is the ‘‘position’’ variablex of the ran-
dom walker!, starts atx05k(0)5v0

2/(2g cosu), and executes

a random walk with mean driftV5tanu2m̄. In this picture
l has the meaning of a ‘‘time’’ variable, and we say that t
sliding-block has stopped at timetmax if its kinetic energy
becomes zero at positionl5tmax. Thus the distribution of
stopping distancesA(l) is the distribution of first passag
times for a random walker to crossx50. This problem turns
out to be exactly equivalent to the ‘‘gambler’s ruin’’ proble
@9,10#, in which one asks for the probability for a gambl
with an initial capitalk0 not to have reached its ruin inl
games if it makes an average winV in each run.

Equivalently, one can ask for the distribution probabili
W(x,t) for a random walker to be at positionx at time t,
when there is an absorbing barrier atx50. The ‘‘flux’’ of
particles atx50 gives then the desired distribution of fir
passage timesA(t). Because of these mappings, the slidin
block problem with uncorrelated random friction turns out
be completely equivalent to compact directed percolat
with an absorbing wall@11# ~CDPW; see also@12#!, which is
exactly solvable, and analogous to directed percolation w
an absorbing wall~DPW! @13#, which has not yet been
solved analytically.

This classical random walk problem has been solved
many different contexts~e.g., @9–15#!. Let W(x,t) be the
probability for the block to have reduced kinetic energyk
5x after traversing a distancel 5t. Sincek(l ) satisfies the
stochastic equation~2!, W(x,t) is a solution of the Fokker-
Planck equation@14#

]W~x,t !

]t
5S 2V

]

]x
1D

]2

]x2D W~x,t ! ~8!

whereD5s2/2. Since the particle stops, i.e., it is eliminate
from the system, when its kinetic energy becomes zero,
has to solve Eq.~8! with absorbing boundary condition a
x50,

r
FIG. 3. Numerical results for the mean stopping length~circles!

and cutoff length~diamonds! as functions of2V. The solid line
~dashed line! corresponds tôl&}uVu21(j}uVu22).
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W~x,t !ux5050 for all t. ~9!

The initial condition isW(x,0)5d(x2k0) if the block starts
with a well defined energyk0. Then, the probabilityP(t) for
the block to have stopped~the random walker to have bee
absorbed! at time t is

A~ t !52E
0

`

Ẇ~x,t !dx5
k0

A4pDt3
expH 2

~k01Vt!2

4Dt J .

~10!

In Fig. 4 we compare this exact solution with our numeric
measurements for the single-bit model. For a random wa
with step lengtha51 it is readily found thatD50.5. We set
k057.2131022 m (v051 m/s andg59.810 m/s2). The
agreement between analytical and numerical results is
good.

Figure 5 showsA(t) from Eq. ~10! for several values of
V, which are taken to be powers of 1/2 for convenien
Notice that forV,0 the area underA(t) is constant and
equal to one, meaning that the block always stops. For p
tive V, on the other hand, this area is less than one, mea
that there is a finite (V-dependent! probability for the block
never to stop, i.e., to ‘‘escape’’ to infinity.

Exactly at the critical angle~i.e., for V50) one obtains

A~ t !5
k0

A4pDt3
expS 2

k0
2

4Dt D . ~11!

For large times (Dt@k0
2) this gives

A~ t !;
k0

A4pDt3
, ~12!

which is consistent with our numerical measurements.
The escape probabilityf5P(`) is plotted in Fig. 6 as a

FIG. 4. Comparison of numerical and analytical results for
stopping probabilityA(t). Averages were taken over 107 simula-
tions withk057.2131022 m (v051 m/s andg59.810 m/s2) for
each chute inclination. Lines indicate the theoretical result@Eq. 10#
for u515° ~long-dashed line!, 40° ~dotted line!, 44.9° ~dashed
line!, andu544.99° ~dot-dashed line!. For u515° andu540° we
show the results of the simulation as small filled points. The circ
are the results foru544.9°. The solid line corresponds to the b
havior found in the experiments@7#, A(t)}t23/2.
l
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function of V. This probability is small ifV is small, thus
there is a continuous phase transition atVc50. As customary
@11#, for V;01 we write

f~V!;Vb1, ~13!

which defines the critical exponentb1. For finite times,

e

s

FIG. 5. Stopping probability per unit timeA(t) for D50.5,k0

57.2131024 m (v051021 m/s andg59.81 m/s2). The drift V
takes the values~a! 2(1/2)7,2(1/2)6,2(1/2)5, . . . , and ~b!
(1/2)7,(1/2)6,(1/2)5, . . . . ForV50 one has thatA(t);t23/2.

FIG. 6. Order parameterf5P(`)512*0
`A(t)dt as function

of V. As can be seen,f50 whenV,0, i.e., the block always stops
which is a consequence of the drift pushing it toward the bar
~the angle being less than critical!. For positiveV, on the other
hand, the drift tends to push the particle away from the barrier~the
angle is larger than critical! and f.0, i.e., there is a finite prob-
ability of escape to infinity. There is a second-order phase transi
at Vc50.
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P(t,V)512*0
t A(t)dt measures the probability for the pa

ticle to be ‘‘alive.’’ The usual scaling arguments allow one
write, for t large anduVu!1,

P~ t,V!;t2d f „t/j~V!… ~14!

with j(V) a correlation time diverging atVc50 as j
;uVu2n i, andd5b1 /n i . The scaling functionf (x) satisfies
f→const whenx→0; thus whenV50 one has thatPt
;t2d, i.e., the power-law decay of correlations that is typic
of a critical point.

Now it is easy to calculateb1 and n i . Since
]P(t,V)/]t52A(t) one has that atV50 A(t) behaves as
t2(11d). Therefore Eq.~12! implies d51/2, in agreement
with BG’s experimental results@7#.

The cutoff timej for finite but smallV results from the
condition that the argument of the exponential in Eq.~10! be
larger than one. Thus, solving (k01Vj)254Dj one obtains
j;2D/V2, i.e., n i52. Thereforeb151. This last value can
be confirmed using Eq.~13!, since

f~V!512E
0

`

A~t,V!dt5E
0

`

$A~t,2V!2A~t,V!%dt

52 sinhS Vk0

2D D E
0

` k0

A4pDt3
expS 2

k0
21V2t2

4Dt D , ~15!

which for small V gives f;V since the integral gives a
constant value in this limit.

The third independent exponent, and the last one nee
to fully characterize the critical behavior in DP, is the ‘‘m
andering exponent’’x defined by ^x2&2^x&2;tx with x
52n' /n i andn' associated with the divergence of ‘‘space
correlationsj';uVu2n'. For a random walk we havêx2&
2^x&2;t and thusx51 implying n'51.

From the values of these exponents one can conclude
for V→02 the mean stopping timêl& behaves aŝ l&
.F

.

l

ed

at

;uVu2t1 with t15n i2b151 @13#. This again is in good
agreement with our numerical measurements.

IV. CONCLUSIONS

This work shows that most of the experimental resu
obtained by Brito and Gomes for sliding blocks on a chu
@7# can be reproduced by a very simple model. Compa
with the traditional problem of a block sliding on a chute,
random friction coefficient is the only new ingredient in o
study. The problem of finding the distribution of stoppin
lengths is equivalent to a first-passage-time random w
problem for an uncorrelated random walker with zero d
and thus has an exact analytical solution. We derive
solution and compare its predictions with numerical resu
obtaining a perfect agreement. At the critical angleuc

5 arctanm̄, a power-law distribution of stopping distances
obtained:A(l);l23/2 in good agreement with experiment
findings. However, some discrepancies arise for the m
sliding length^l& and for the cutoffj(u) in the distribution
A(l). In this work we found that the mean sliding length^l&
behaves aŝl&;uVu21, while BG report^l&'uVu20.23. We
believe that this difference is due to uncontrolled experim
tal errors, mainly because of the difficulty involved in th
measurement of̂m& ~and thusuc) on real systems. When
u→uc we find that there exists au-dependent cutoffj(u).
BG @7# do not report any evidence for the existence o
finite cutoff. According to our results, a larger number
experimental realizations in a larger plane would be nee
before a cutoff could be clearly distinguished inA(l).

ACKNOWLEDGMENTS

C.M. wishes to thank Kent Lauritsen for useful discu
sions on directed percolation, and also for pointing out
equivalence between our model and compact directed pe
lation with a wall. The authors acknowledge financial su
port from Brazilian agencies FAPERJ, CNPq, and CAPE
ys.

-

ic

p-
@1# M.S. Vieira and H.J. Herrmann, Phys. Rev. E49, 4534~1994!;
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