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Sliding blocks with random friction and absorbing random walks
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With the purpose of explaining recent experimental findings, we study the distribhifionof distances\
traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the
friction coefficientu is a random function of position is considered. The problem of findi(¥) is equivalent
to a first-passage-time problem for a one-dimensional random walk with nonzero drift, whose exact solution is
well known. From the exact solution of this problem we conclude ¢ggfor inclination anglest less than
6.=tan({u)) the average traversed distar{@é is finite, and diverges whefi— 6, as(\)~(6.—6) ~%; (b) at
the critical angle a power-law distribution of slidings is obtain@gx)~X~%2 Our analytical results are
confirmed by numerical simulation and are in partial agreement with the reported experimental results. We
discuss the possible reasons for the remaining discrepancies.

PACS numbegps): 05.40—a, 68.35.Rh, 46.55.d

[. INTRODUCTION ingredient is a randomly varying friction coefficient can ex-
plain recent experimental findings. We consider in particular
Friction between solid surfaces is present in everyday lifethe dynamics of a sliding block on an inclined plane. This
One of the first experimental studies on friction was done byproblem has been recently revisited by Brito and Gomes
Leonardo da Vinci. His studies were rediscovered and an(BG) [7], who report unexpected results. In their experimen-
nounced by Amonton de la Hire in 1699 in the form of two tal setup, a block rests on a plane that makes an ahgligh
laws: friction forces area) independent of the size of the the horizontal, wherd is close to but smaller tha#,, the
surfaces in contact an@) proportional to the normal load. critical angle for dynamic friction. The block is set in motion
The proportionality coefficienj. is the friction coefficient, py the impact of a hammer at the base of the inclined plane.
and depends on the material. The influence of velocity wag, “sliding” is thus produced, and the block stops after tra-
later studied by Coulomb, who discussed the difference be\7ersing a distance.. Measuring the distributioN()\) of

twegn .static and dynamic friction. Sir]ce then many StUdie%Iidings with length larger than, these authors find that, for
of friction have been conducted, which have revealed the, . o0 N(\)~\ . The exponens is ~1/2 and does
c» .

com_pl_exity of friction relate_d phenomeri&—_?]. The study not seem to depend on the type of material that makes the
of friction has been the subject of renewed interest lately du%lock. Further exponents can be defined in principle, such as

to its relevance in the behavior of granular materj2ls o . -
Due to surface roughness, the interface between two so}he one describing the divergence of the mean sliding length

ids put in contact can be thought of as consisting of manyi\)~(6c—6)"™ as 6—6; . Brito and Gomes report;
points, rather than as a continuous regidh These contact ~0-23[7].
points define a two-dimensional random set called a “multi- In this work we introduce a model that uses a simple
contact interface.” A basic setup for experiments on multi-expressior{3] for the friction force and provides a micro-
contact interfaces consists of a slider of misgpulled by a  scopic explanation for most of the findings of Brito and Go-
spring with effective stiffnes& (which could represent the mes. We assume that friction is due to the existence of ran-
bulk elasticity of the soligl at a driving velocityv [4]. De- dom contact points between the surfaces; therefore the
pending on the parameteksv, and M, the sliding motion friction coefficient is a rapidly varying functiop.(/) of the
can have different regimes, including an oscillating ‘“stick- block position/” on the plane. A fundamental hypothesis,
slip” instability. Moreover, the friction coefficient is found which makes this model exactly solvable, is that the distri-
to depend not only on these three parameters but also onkaition of contact points isncorrelatedon the length scales
variety of other factors such as contact stiffness, creep agingf interest. We focus here on the simplest realization of the
and velocity weakening of the contacts, that lead to a depermodel, where no other features such as velocity-dependent
dence not only on the instantaneous velocity but also on théorces are included. This model has been studied numerically
sliding history[4,5]. Therefore, the friction force seems to be previously[8]. We show here that a closed analytical solu-
both state and rate dependent. A phenomenological derivaion can be obtained by mapping this problem onto a first-
tion of the friction force that reproduces some aspects of thpassage-time problem.
experimental data was proposed by Caroli and Velidy This paper is structured as follows: in Sec. Il our model is
Here, we focus on the random character of the multicondescribed and some numerical results are presented. In Sec.
tact interface, and show that a simple model whose onlyll it is shown that this system is equivalent to a random
walk with an absorbing barrier, and an exact solution is de-
rived for the distribution of slidings. Also in this section a
*Electronic address: arlima@if.uff.br comparison is made between numerical, analytical, and ex-
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PN For simplicity we assumeu(/) to be an uncorrelated
O a random function of position, i.e.,
\\\\ /V\ " ’
R =pu—n(/), 3
%@ “ % cng m()=p—n(7)
6
e' where
N (n(/))=0,
ro| N8,
(N "))=0>8(/ =/,
) mg 0
4 7 so that Eq(2) now reads
FIG. 1. Schematic representation for the block sliding on a k()
chute.\ is the displacement from the initial block position. The PV =V+5(/), (4)

friction force depends on the block’s position.

perimental results. Section IV contains a short discussion O\fvhereV= tan6—pu IS th? mean drift andy(~) is a noise
our results. term. If the mean driflv is positive, clearly there will be a

finite probability for the block never to stop. F&<<0, on
the other hand, the block always stops.

This problem can be easily implemented numericgsly
Consider a block of massaon a p|ane making an ang& In our numerical implementation both the block and the
with the horizontal, and assume that at titreO the block is  Plane surfaces are represented by finite sequences of 0's and

set in motion with velocityv,, i.e., with kinetic energyk,  1's, each bit corresponding to a small region of lengtif a
=mu2/2. Let/ be the distance traversed by the block fromdiven region of the surface is “prominent,” the correspond-
its starting position, measured along the plane, ii6d) its N9 bit is set to 1. Similarly, if that region is “deep,” the
kinetic energy. Since the friction force opposing the move-corresponding bit is set to 0. Thus the profile of these sur-
ment is mgu(/)cosé, and the parallel component of the faces is represented by strings of bits that are set to 1 with

gravitational force isngsiné (see Fig. 1, energy balance probability C, andC;, for the plane and b_Iock, respectively.
implies One says that the block and plane are in contact at a given

point whenever both the plane bit and the block bit that sits
dK+{mgu(/)cosf—mgsing}d/ =0. (1)  ontop of it are set to 1. Assuming that the friction coefficient
is proportional to the number of “regions” in contagi(/")
We rewrite this in terms of the reduced kinetic energyat position/ takes the value
k(7)=K(/)Imgcos# as

Il. THE MODEL

/ —bN(/)

K(/) ) R T
Py tand— w(/). 2

where N(/) is the number of microcontact®N,,,, is the

This equation can be integrated until the kinetic energy beblock length in bits, and is a constant that can be associated
comes zero. This defines the “avalanche size,” or stoppingVith the contact stiffness. Equatidb) is similar to the one
distance. If x(/)=C independent of’, one has thak . p_roposed by Bowden and Tebﬁﬁ]. .The dynamic evolut|on'
=v2/[2gcosé(C— tand)]. This does not in general agree dictated by Eqg.(2) can be dl_scretlzeel ar_1d, after each c_Jlls-
with experimental resultg7], which show a broad distribu- Placement of lengtha (one bid, the kinetic energy loss is
tion of stopping distances. One could argue that in the ex‘@lculated as
periments of BGy is randomly distributed and thasmust

show a distribution with a finite width as well. But this sort Ak=a
of randomness cannot give rise to a power-law distribution

of stopping distances as observed in experiments, UBkeSS The plock is moved on the plane in single-bit steps until the
itself is power-law distributed, which does not seem to benetic energy vanishes. The critical anglg is defined by

, ®)

tan 0) — (6)

bN(t))

N max

easily justified. taking (Ak)=0 in Eq.(6) and gives
Because of the random character of the multicontact in- Ing (Ak) in Eq. (6) a
terface, on the other hand, it is physically reasonable to as- tan 902;: bCyCh, 7

sume that the coefficient of friction is not constant but

changes randomly from point to point. In this case the stop- In the limit in which the average sliding is much larger
ping length\ becomes a stochastic variable, and we are inthan the block size in bit§.e., if v is large or6 is close to
terested here in calculating the probabili(\) for the  6.) one does not expect any dependence of the results on the
block to stop at a given positiox. We will show that under length N, Of the block, as long as the distribution of the
certain circumstance®.g., close to the critical anglefluc-  friction coefficientu has a constant mean and width. In this
tuations in the friction coefficient can have important observ-case it is numerically convenient to take a block length of
able consequences, and in particular that such fluctuatiorene bit (which is always set to )1 The plane bits, on the
give rise to a power-law distribution of stopping distances. other hand, are set to 1 with probabiliG,. In this caseu
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FIG. 2. DistributionA(\) of stopping lengths as obtained nu- FIG. 3. Numerical results for the mean stopping lengiicles
merically for the one-bit-block model. Averages were taken overand cutoff length(diamondg as functions of—V. The solid line
10° realizations with an initial reduced kinetic energy=7.21  (dashed lingcorresponds tgx)o|V|~1(£x|V|72).

X107% m (vo=10"2 m/s andg=9.810 m/4) and a critical angle
0.=45°. The inclination angl® of the plane was 35(circles, 40° IIl. MAPPING TO A FIRST-PASSAGE-TIME PROBLEM

(squarey 44° (diamonds, 44.9° (triangleg, and 44.99°(crosses Sincek(/) satisfies Ea(2) the problem of findindA(\
The dashed line corresponds Ag\)=\"%2 The same exponent is readily (mgpped onto g( fi)rst-papssage-ti(ﬁ@'l') prgz(ler)n
was found experimentallly7]. . . N
for a random walker with nonzero drift. The reduced kinetic
. . energyk(/) (which is the “position” variablex of the ran-
takes the values O arldwith probabilities :-C, andC,,, dom walkey, starts ako=k(0)=v2/(2g cos#), and executes

respectively, so that =bC,. Figure 2 shows our numerical a random walk with mean drif¢=tané— . In this picture
results for this single-bit implementation. We have u§gd / has the meaning of a “time” variable, and we say that the
=0.5 andb=2, i.e., u=1, therefored.= w/4. The initial  sliding-block has stopped at tintg,,, if its kinetic energy
reduced kinetic energy wasko=7.21X10 % m (vq becomes zero at position=t,. Thus the distribution of
=102 m/s andg=9.810 m/4). Averages were performed stopping distance#\(\) is the distribution of first passage
over 1 realizations for each value af. When §— 6, we  times for a random walker to crogs=0. This problem turns
find thatA(X\)~\ %72, for A smaller than @-dependent cut- out to be exactly equivalent to the “gambler’s ruin” problem
off £(0). This behavior is in partial agreement with the ex-[9,10], in which one asks for the probability for a gambler
perimental results of BG7]. While the exponent they find is  with an initial capitalky not to have reached its ruin in
consistent with 3/2, they do not report any evidence for thegames if it makes an average win each run.
existence of a finite cutoff. According to our results, a very  Equivalently, one can ask for the distribution probability
large number of experimental realizations would be needetlV(x,t) for a random walker to be at positionat time t,
before a cutoff could be clearly distinguished Af\). As  when there is an absorbing barrierxat 0. The “flux” of
can be seen by integrating the data in Fig. 2, for deviationparticles atx=0 gives then the desired distribution of first
from the critical angle as large as 10%(\) deviates from passage timeA(t). Because of these mappings, the sliding-
a power-law behavior only for very large events, which haveblock problem with uncorrelated random friction turns out to
a small probability 10° to happen. This means that one be completely equivalent to compact directed percolation
needs of order Trealizations in order to assess the exis-with an absorbing wall11] (CDPW; see alsf12]), which is
tence of a cutoff inA(\). Notice, however, that BG only exactly solvable, and analogous to directed percolation with
performed 18 repetitions of their measurements for each setan absorbing wall(DPW) [13], which has not yet been
of parameters. solved analytically.

Figure 3 displays the mean stopping lengi) and the This classical random walk problem has been solved in
cutoff & versusV(6.— 6), calculated from the data in Fig. many different contextse.g.,[9-15]). Let W(x,t) be the
2. When #— 6, (V—0) we find that(\)~(6.—6#) ' and  probability for the block to have reduced kinetic eneilgy
é~(6,— 0) 2 approximate our numerical results well. This =X after traversing a distancé=t. Sincek(/) satisfies the
is in slight discrepancy with BG who report théx)~ (6,  stochastic equatiof2), W(x,t) is a solution of the Fokker-
— ) 923 [7]. This result is not surprising because, as wePlanck equatior14]
pointed out before, the number of realizations is not large
enough to assess the existence of the cutoff. In addition, the IW(X,t)
plane used in the experiments was also too sftion long. a
According to our arguments, the experimental results of BG
correspond to the region of large absolute valueg,afhere  whereD = /2. Since the particle stops, i.e., it is eliminated
the exponent for the mean stopping length as a function ofrom the system, when its kinetic energy becomes zero, one
the slope of the plane is consistent with the experimentahas to solve Eq(8) with absorbing boundary condition at
value (=—0.23). x=0,

(92

_V5+Dﬁ W(X,t) (8)
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FIG. 4. Comparison of numerical and analytical results for the 10° I(b) |
stopping probabilityA(t). Averages were taken over 18imula-
tions withkg=7.21X10"2 m (v,=1 m/s andy=9.810 m/$) for 107
each chute inclination. Lines indicate the theoretical rggtdt 10
for 6=15° (long-dashed ling 40° (dotted ling, 44.9° (dashed = 10°
line), and 6=44.99° (dot-dashed ling For 6=15° and6=40° we %
show the results of the simulation as small filled points. The circles 10°
are the results fod=44.9°. The solid line corresponds to the be-
havior found in the experimen{g], A(t)oct ™32 10°
W(x,t)|y—q=0 forall t. 9 107" -_4/\ - L -
10 10 10 10 10’
The initial condition isW(x,0)= 8(x—Kk;) if the block starts t

with a well defined energlty. Then, the probabilityr(t) for

the block to have stoppe(the random walker to have been

absorbeglat timet is

()= . (x,t) X—Wex Dt .
(10)

In Fig. 4 we compare this exact solution with our numerical
measurements for the single-bit model. For a random walker

with step lengtra=1 it is readily found thaD =0.5. We set
ko=7.21x10"2 m (vo=1 m/s andg=9.810 m/$). The

FIG. 5. Stopping probability per unit tim&(t) for D=0.5,kq
=7.21x10 % m (vo=10"! m/s andg=9.81 m/g). The drift V
takes the values(a —(1/2)",—(1/2)% —(1/2)%, ..., and (b)
(1/2)7,(1/2)8,(1/2)°, . ... ForV=0 one has thaf(t)~t~%?

function of V. This probability is small ifV is small, thus
there is a continuous phase transitioWgt 0. As customary
[11], for V~0+ we write

B(V)~ VP, (13

agreement between analytical and numerical results is venyhich defines the critical exponerng;. For finite times,

good.
Figure 5 showsA(t) from Eg. (10) for several values of

V, which are taken to be powers of 1/2 for convenience.

Notice that forV<O0 the area undeA(t) is constant and

equal to one, meaning that the block always stops. For posi-
tive V, on the other hand, this area is less than one, meaning

that there is a finite \(-dependentprobability for the block
never to stop, i.e., to “escape” to infinity.
Exactly at the critical anglé.e., for V=0) one obtains

At = —2 % 11
Y™ Jamoe A " a0t} “
For large times Dt>k§) this gives
Ko
A(t)~ Nrereh (12)

which is consistent with our numerical measurements.
The escape probability=P(o0) is plotted in Fig. 6 as a
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FIG. 6. Order parametep=P(»)=1~— [gA(7)d7 as function
of V. As can be seerp)=0 whenV<0, i.e., the block always stops,
which is a consequence of the drift pushing it toward the barrier
(the angle being less than critizaFor positiveV, on the other
hand, the drift tends to push the particle away from the baftier
angle is larger than criticaland ¢>0, i.e., there is a finite prob-
ability of escape to infinity. There is a second-order phase transition
atV.=0.
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P(t,V)=1- [LA(7)d7 measures the probability for the par- ~[V|~™ with m,=v|—B,=1 [13]. This again is in good
ticle to be “alive.” The usual scaling arguments allow one to agreement with our numerical measurements.
write, fort large andV|<1,

P(t,V)~t %t (t/&(V)) (14)

IV. CONCLUSIONS

This work shows that most of the experimental results
with £(V) a correlation time diverging av/,=0 as &  obtained by Brito and Gomes for sliding blocks on a chute
~|V| ™", and 8= B, /v. The scaling functiorf(x) satisfies [7] can be reproduced by a very simple model. Compared
f—const whenx—0; thus whenV=0 one has thatP, with the traditional problem of a block sliding on a chute, a

~t7% i.e., the power-law decay of correlations that is typicalrandom friction coefficient is the only new ingredient in our
of a critical point. study. The problem of finding the distribution of stopping

Now it is easy to calculate; and »j. Since lengths is equivalent to a first-passage-time random walk
aP(t,V)/at=—A(t) one has that a¥=0 A(t) behaves as Problem for an uncorrelated random walker with zero drift
t~(*9_ Therefore Eq.(12) implies 6=1/2, in agreement and thus has an exact analytical solution. We derive this

with BG's experimental result7]. solution and compare its predictions with numerical results,
The cutoff timeé for finite but smallV results from the obtaining a perfect agreement. At the critical angle
condition that the argument of the exponential in E)) be = arctanu, a power-law distribution of stopping distances is

larger than one. Thus, solvingd+V&)?=4D¢ one obtains  obtained:A(A)~X ~%2in good agreement with experimental
£~2DIV? ie., v =2. ThereforeB,;=1. This last value can findings. However, some discrepancies arise for the mean

be confirmed using Eq13), since sliding length{\) and for the cutoffé(d) in the distribution
A(N). In this work we found that the mean sliding lengi)
17 N RV behaves ag\)~|V| ™1, while BG report(\)~|V|~ %23 we
V)=1 A(r,V)dr= A(r,—V)—A(7,V)}d . L . .
¢V) fo (V)dr fo {A(r )= A(mV)idr believe that this difference is due to uncontrolled experimen-

tal errors, mainly because of the difficulty involved in the
measurement ofx) (and thusé.) on real systems. When
, (15  9— 46, we find that there exists a-dependent cutoff(6).
BG [7] do not report any evidence for the existence of a
finite cutoff. According to our results, a larger number of
experimental realizations in a larger plane would be needed
é:before a cutoff could be clearly distinguishedAii\).

- Vko Joc Ko k3+V2t?
~=¥M20 ) Jo Vazpe T\ 4Dt

which for smallV gives ¢~V since the integral gives a
constant value in this limit.

The third independent exponent, and the last one need
to fully characterize the critical behavior in DP, is the “me-
andering exponent”y defined by (x?)—(x)2~tX with x
=2v, /vjandv, associated with the divergence of “space”  C.M. wishes to thank Kent Lauritsen for useful discus-
correlations¢, ~|V|~*L. For a random walk we hav&?)  sions on directed percolation, and also for pointing out the
—(x)?~t and thusy=1 implying v, =1. equivalence between our model and compact directed perco-

From the values of these exponents one can conclude thkdtion with a wall. The authors acknowledge financial sup-
for V—0~ the mean stopping timg\) behaves ag\)  port from Brazilian agencies FAPERJ, CNPq, and CAPES.
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